Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: covidwho-20243981

ABSTRACT

SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin-converting enzyme 2 (ACE2) and results in the production of multiple proinflammatory cytokines, especially in the lungs, leading to what is known as COVID-19. However, the cell source and the mechanism of secretion of such cytokines have not been adequately characterized. In this study, we used human cultured mast cells that are plentiful in the lungs and showed that recombinant SARS-CoV-2 full-length S protein (1-10 ng/mL), but not its receptor-binding domain (RBD), stimulates the secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) as well as the proteolytic enzymes chymase and tryptase. The secretion of IL-1ß, chymase, and tryptase is augmented by the co-administration of interleukin-33 (IL-33) (30 ng/mL). This effect is mediated via toll-like receptor 4 (TLR4) for IL-1ß and via ACE2 for chymase and tryptase. These results provide evidence that the SARS-CoV-2 S protein contributes to inflammation by stimulating mast cells through different receptors and could lead to new targeted treatment approaches.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Chymases/metabolism , Cytokines/metabolism , Interleukin-1beta/metabolism , Interleukin-33/metabolism , Mast Cells/metabolism , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Tryptases/metabolism
2.
Cells ; 12(9)2023 04 28.
Article in English | MEDLINE | ID: covidwho-2318072

ABSTRACT

As autophagy can promote or inhibit inflammation, we examined autophagy-inflammation interplay in COVID-19. Autophagy markers in the blood of 19 control subjects and 26 COVID-19 patients at hospital admission and one week later were measured by ELISA, while cytokine levels were examined by flow cytometric bead immunoassay. The antiviral IFN-α and proinflammatory TNF, IL-6, IL-8, IL-17, IL-33, and IFN-γ were elevated in COVID-19 patients at both time points, while IL-10 and IL-1ß were increased at admission and one week later, respectively. Autophagy markers LC3 and ATG5 were unaltered in COVID-19. In contrast, the concentration of autophagic cargo receptor p62 was significantly lower and positively correlated with TNF, IL-10, IL-17, and IL-33 at hospital admission, returning to normal levels after one week. The expression of SARS-CoV-2 proteins NSP5 or ORF3a in THP-1 monocytes caused an autophagy-independent decrease or autophagy-inhibition-dependent increase, respectively, of intracellular/secreted p62, as confirmed by immunoblot/ELISA. This was associated with an NSP5-mediated decrease in TNF/IL-10 mRNA and an ORF3a-mediated increase in TNF/IL-1ß/IL-6/IL-10/IL-33 mRNA levels. A genetic knockdown of p62 mimicked the immunosuppressive effect of NSP5, and a p62 increase in autophagy-deficient cells mirrored the immunostimulatory action of ORF3a. In conclusion, the proinflammatory autophagy receptor p62 is reduced inacute COVID-19, and the balance between autophagy-independent decrease and autophagy blockade-dependent increase of p62 levels could affect SARS-CoV-induced inflammation.


Subject(s)
COVID-19 , Inflammation , Humans , Autophagy , COVID-19/pathology , Inflammation/metabolism , Interleukin-10/blood , Interleukin-17/blood , Interleukin-33/blood , Interleukin-6/blood , RNA, Messenger , SARS-CoV-2
3.
Front Immunol ; 14: 1170012, 2023.
Article in English | MEDLINE | ID: covidwho-2296289

ABSTRACT

Clinical outcomes from infection with SARS-CoV-2, the cause of the COVID-19 pandemic, are remarkably variable ranging from asymptomatic infection to severe pneumonia and death. One of the key drivers of this variability is differing trajectories in the immune response to SARS-CoV-2 infection. Many studies have noted markedly elevated cytokine levels in severe COVID-19, although results vary by cohort, cytokine studied and sensitivity of assay used. We assessed the immune response in acute COVID-19 by measuring 20 inflammatory markers in 118 unvaccinated patients with acute COVID-19 (median age: 70, IQR: 58-79 years; 48.3% female) recruited during the first year of the pandemic and 44 SARS-CoV-2 naïve healthy controls. Acute COVID-19 was associated with marked elevations in nearly all pro-inflammatory markers, whilst eleven markers (namely IL-1ß, IL-2, IL-6, IL-10, IL-18, IL-23, IL-33, TNF-α, IP-10, G-CSF and YKL-40) were associated with disease severity. We observed significant correlations between nearly all markers elevated in those infected with SARS-CoV-2 consistent with widespread immune dysregulation. Principal component analysis highlighted a pro-inflammatory cytokine signature (with strongest contributions from IL-1ß, IL-2, IL-6, IL-10, IL-33, G-CSF, TNF-α and IP-10) which was independently associated with severe COVID-19 (aOR: 1.40, 1.11-1.76, p=0.005), invasive mechanical ventilation (aOR: 1.61, 1.19-2.20, p=0.001) and mortality (aOR 1.57, 1.06-2.32, p = 0.02). Our findings demonstrate elevated cytokines and widespread immune dysregulation in severe COVID-19, adding further evidence for the role of a pro-inflammatory cytokine signature in severe and critical COVID-19.


Subject(s)
COVID-19 , Humans , Female , Aged , Male , Cytokines , Interleukin-10 , Interleukin-33 , SARS-CoV-2 , Interleukin-6 , Tumor Necrosis Factor-alpha , Pandemics , Chemokine CXCL10 , Interleukin-2 , Granulocyte Colony-Stimulating Factor
4.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2260045

ABSTRACT

Since the start of COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 6 million people have lost their lives worldwide directly or indirectly. Despite intensified efforts to clarify the immunopathology of COVID-19, the key factors and processes that trigger an inflammatory storm and lead to severe clinical outcomes in patients remain unclear. As an inflammatory storm factor, IL-33 is an alarmin cytokine, which plays an important role in cell damage or infection. Recent studies have shown that serum IL-33 is upregulated in COVID-19 patients and is strongly associated with poor outcomes. Increased IL-33 levels in severe infections may result from an inflammatory storm caused by strong interactions between activated immune cells. However, the effects of IL-33 in COVID-19 and the underlying mechanisms remain to be fully elucidated. In this review, we systematically discuss the biological properties of IL-33 under pathophysiological conditions and its regulation of immune cells, including neutrophils, innate lymphocytes (ILCs), dendritic cells, macrophages, CD4+ T cells, Th17/Treg cells, and CD8+ T cells, in COVID-19 phagocytosis. The aim of this review is to explore the potential value of the IL-33/immune cell pathway as a new target for early diagnosis, monitoring of severe cases, and clinical treatment of COVID-19.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Interleukin-33 , Cytokines/metabolism
5.
Crit Care Med ; 51(1): 103-116, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2161200

ABSTRACT

OBJECTIVES: Severe cases of COVID-19 pneumonia can lead to acute respiratory distress syndrome (ARDS). Release of interleukin (IL)-33, an epithelial-derived alarmin, and IL-33/ST2 pathway activation are linked with ARDS development in other viral infections. IL-22, a cytokine that modulates innate immunity through multiple regenerative and protective mechanisms in lung epithelial cells, is reduced in patients with ARDS. This study aimed to evaluate safety and efficacy of astegolimab, a human immunoglobulin G2 monoclonal antibody that selectively inhibits the IL-33 receptor, ST2, or efmarodocokin alfa, a human IL-22 fusion protein that activates IL-22 signaling, for treatment of severe COVID-19 pneumonia. DESIGN: Phase 2, double-blind, placebo-controlled study (COVID-astegolimab-IL). SETTING: Hospitals. PATIENTS: Hospitalized adults with severe COVID-19 pneumonia. INTERVENTIONS: Patients were randomized to receive IV astegolimab, efmarodocokin alfa, or placebo, plus standard of care. The primary endpoint was time to recovery, defined as time to a score of 1 or 2 on a 7-category ordinal scale by day 28. MEASUREMENTS AND MAIN RESULTS: The study randomized 396 patients. Median time to recovery was 11 days (hazard ratio [HR], 1.01 d; p = 0.93) and 10 days (HR, 1.15 d; p = 0.38) for astegolimab and efmarodocokin alfa, respectively, versus 10 days for placebo. Key secondary endpoints (improved recovery, mortality, or prevention of worsening) showed no treatment benefits. No new safety signals were observed and adverse events were similar across treatment arms. Biomarkers demonstrated that both drugs were pharmacologically active. CONCLUSIONS: Treatment with astegolimab or efmarodocokin alfa did not improve time to recovery in patients with severe COVID-19 pneumonia.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Humans , Interleukin-33 , SARS-CoV-2 , Interleukin-1 Receptor-Like 1 Protein , Treatment Outcome
6.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2123696

ABSTRACT

Coronavirus SARS-CoV-2 has represented, and still represents, a real challenge from a clinical, diagnostic and therapeutic point of view. During acute infection, the increased levels of pro-inflammatory cytokines, which are involved in the pathology of disease and the development of SARS-CoV-2-induced acute respiratory disease syndrome, the life-threatening form of this infection, are correlated with patient survival and disease severity. IL-33, a key cytokine involved in both innate and adaptive immune responses in mucosal organs, can increase airway inflammation, mucus secretion and Th2 cytokine synthesis in the lungs, following respiratory infections. Similar to cases of exposure to known respiratory virus infections, exposure to SARS-CoV-2 induces the expression of IL-33, correlating with T-cell activation and lung disease severity. In this work, we analyse current evidence regarding the immunological role of IL-33 in patients affected by COVID-19, to evaluate not only the clinical impact correlated to its production but also to identify possible future immunological therapies that can block the most expressed inflammatory molecules, preventing worsening of the disease and saving patient lives.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Humans , SARS-CoV-2/metabolism , Interleukin-33 , Precision Medicine , Cytokines/metabolism
7.
Front Immunol ; 13: 865973, 2022.
Article in English | MEDLINE | ID: covidwho-1987490

ABSTRACT

Viral infection, especially with rhinovirus (RV), is a major cause of asthma exacerbation. The production of anti-viral cytokines such as interferon (IFN)-ß and IFN-α from epithelial cells or dendritic cells is lower in patients with asthma or those with high IgE, which can contribute to viral-induced exacerbated disease in these patients. As for virus-related factors, RV species C (RV-C) induces more exacerbated disease than other RVs, including RV-B. Neutrophils activated by viral infection can induce eosinophilic airway inflammation through different mechanisms. Furthermore, virus-induced or virus-related proteins can directly activate eosinophils. For example, CXCL10, which is upregulated during viral infection, activates eosinophils in vitro. The role of innate immune responses, especially type-2 innate lymphoid cells (ILC2) and epithelial cell-related cytokines including IL-33, IL-25, and thymic stromal lymphopoietin (TSLP), in the development of viral-induced airway inflammation has recently been established. For example, RV infection induces the expression of IL-33 or IL-25, or increases the ratio of ILC2 in the asthmatic airway, which is correlated with the severity of exacerbation. A mouse model has further demonstrated that virus-induced mucous metaplasia and ILC2 expansion are suppressed by antagonizing or deleting IL-33, IL-25, or TSLP. For treatment, IFNs including IFN-ß suppress not only viral replication but also ILC2 activation in vitro. Agonists of toll-like receptor (TLR) 3 or 7 can induce IFNs, which can then suppress viral replication and ILC2 activation. Therefore, if delivered in the airway, IFNs or TLR agonists could become innovative treatments for virus-induced asthma exacerbation.


Subject(s)
Asthma , Enterovirus Infections , Animals , Antiviral Agents , Cytokines , Immunity, Innate , Inflammation , Interferon-alpha , Interferon-beta , Interleukin-33 , Lymphocytes , Mice , Rhinovirus
9.
J Asthma ; 59(12): 2530-2538, 2022 12.
Article in English | MEDLINE | ID: covidwho-1585560

ABSTRACT

OBJECTIVE: Identify key features of IL-33 immunobiology important in allergic and nonallergic airway inflammatory diseases and potential therapeutic strategies to reduce disease burden. DATA SOURCES: PubMed, clinicaltrials.gov. STUDY SELECTIONS: A systematic and focused literature search was conducted of PubMed from March 2021 to December 2021 using keywords to either PubMed or BioMed Explorer including IL-33/ST2, genetic polymorphisms, transcription, translation, post-translation modification, nuclear protein, allergy, asthma, and lung disease. Clinical trial information on IL-33 was extracted from clinicaltrials.gov in August 2021. RESULTS: In total, 72 publications with relevance to IL-33 immunobiology and/or clinical lung disease were identified (allergic airway inflammation/allergic asthma n = 26, non-allergic airway inflammation n = 9, COPD n = 8, lung fibrosis n = 10). IL-33 levels were higher in serum, BALF and/or lungs across inflammatory lung diseases. Eight studies described viral infections and IL-33 and 4 studies related to COVID-19. Mechanistic studies (n = 39) including transcript variants and post-translational modifications related to the immunobiology of IL-33. Single nucleotide polymorphism in IL-33 or ST2 were described in 9 studies (asthma n = 5, inflammatory bowel disease n = 1, mycosis fungoides n = 1, ankylosing spondylitis n = 1, coronary artery disease n = 1). Clinicaltrials.gov search yielded 84 studies of which 17 were related to therapeutic or biomarker relevance in lung disease. CONCLUSION: An integral role of IL-33 in the pathogenesis of allergic and nonallergic airway inflammatory disease is evident with several emerging clinical trials investigating therapeutic approaches. Current data support a critical role of IL-33 in damage signaling, repair and regeneration of lungs.


Subject(s)
Asthma , COVID-19 , Hypersensitivity , Humans , Asthma/drug therapy , Interleukin-33/genetics , Interleukin-33/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Lung/pathology , Inflammation/pathology
10.
PLoS One ; 16(11): e0259026, 2021.
Article in English | MEDLINE | ID: covidwho-1496522

ABSTRACT

Interleukin (IL)-33 and its unique receptor, ST2, play a pivotal role in the immune response to infection and stress. However, there have been conflicting reports of the role of IL-33 in cardiovascular disease (CVD) and the potential of this axis in differentiating CVD patients and controls and with CVD disease severity, remains unclear. AIMS: 1) To quantify differences in circulating IL-33 and/or sST2 levels between CVD patients versus controls. 2) Determine association of these biomarkers with mortality in CVD and community cohorts. METHODS AND RESULTS: Using Pubmed/MEDLINE, Web of Science, Prospero and Cochrane databases, systematic review of studies published on IL-33 and/or sST2 levels in patients with CVD (heart failure, acute coronary syndrome, atrial fibrillation, stroke, coronary artery disease and hypertension) vs controls, and in cohorts of each CVD subtype was performed. Pooled standardised mean difference (SMD) of biomarker levels between CVD-cases versus controls and hazard ratios (HRs) for risk of mortality during follow-up in CVD patients, were assessed by random effects meta-analyses. Heterogeneity was evaluated with random-effects meta-regressions. From 1071 studies screened, 77 were meta-analysed. IL-33 levels were lower in HF and CAD patients vs controls, however levels were higher in stroke patients compared controls [Meta-SMD 1.455, 95% CI 0.372-2.537; p = 0.008, I2 = 97.645]. Soluble ST2 had a stronger association with risk of all-cause mortality in ACS (Meta-multivariate HR 2.207, 95% CI 1.160-4.198; p = 0.016, I2 = 95.661) than risk of all-cause mortality in HF (Meta-multivariate HR 1.425, 95% CI 1.268-1.601; p<0.0001, I2 = 92.276). There were insufficient data to examine the association of IL-33 with clinical outcomes in CVD. CONCLUSIONS: IL-33 and sST2 levels differ between CVD patients and controls. Higher levels of sST2 are associated with increased mortality in individuals with CVD. Further study of IL-33/ST2 in cardiovascular studies is essential to progress diagnostic and therapeutic advances related to IL-33/ST2 signalling.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/metabolism , Signal Transduction , Acute Coronary Syndrome/metabolism , Cardiovascular Diseases , Case-Control Studies , Cohort Studies , Confidence Intervals , Heart Failure/metabolism , Humans , Multivariate Analysis , Risk Factors , Treatment Outcome
11.
Immunology ; 164(3): 541-554, 2021 11.
Article in English | MEDLINE | ID: covidwho-1488214

ABSTRACT

IL-33 and ATP are alarmins, which are released upon damage of cellular barriers or are actively secreted upon cell stress. Due to high-density expression of the IL-33 receptor T1/ST2 (IL-33R), and the ATP receptor P2X7, mast cells (MCs) are one of the first highly sensitive sentinels recognizing released IL-33 or ATP in damaged peripheral tissues. Whereas IL-33 induces the MyD88-dependent activation of the TAK1-IKK2-NF-κB signalling, ATP induces the Ca2+ -dependent activation of NFAT. Thereby, each signal alone only induces a moderate production of pro-inflammatory cytokines and lipid mediators (LMs). However, MCs, which simultaneously sense (co-sensing) IL-33 and ATP, display an enhanced and prolonged activation of the TAK1-IKK2-NF-κB signalling pathway. This resulted in a massive production of pro-inflammatory cytokines such as IL-2, IL-4, IL-6 and GM-CSF as well as of arachidonic acid-derived cyclooxygenase (COX)-mediated pro-inflammatory prostaglandins (PGs) and thromboxanes (TXs), hallmarks of strong MC activation. Collectively, these data show that co-sensing of ATP and IL-33 results in hyperactivation of MCs, which resembles to MC activation induced by IgE-mediated crosslinking of the FcεRI. Therefore, the IL-33/IL-33R and/or the ATP/P2X7 signalling axis are attractive targets for therapeutical intervention of diseases associated with the loss of integrity of cellular barriers such as allergic and infectious respiratory reactions.


Subject(s)
Adenosine Triphosphate/metabolism , Hypersensitivity/immunology , Interleukin-33/metabolism , Mast Cells/immunology , Animals , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Cell Degranulation/drug effects , Cytokines/metabolism , Disease Models, Animal , Eicosanoids/metabolism , Humans , Hypersensitivity/drug therapy , Interleukin-1 Receptor-Like 1 Protein/antagonists & inhibitors , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/antagonists & inhibitors , Lipidomics , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , Primary Cell Culture , Receptors, Purinergic P2X7/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
13.
Cell Mol Immunol ; 18(6): 1602-1604, 2021 06.
Article in English | MEDLINE | ID: covidwho-1223085
14.
Nat Commun ; 12(1): 2133, 2021 04 09.
Article in English | MEDLINE | ID: covidwho-1174672

ABSTRACT

Our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still developing. We perform an observational study to investigate seroprevalence and immune responses in subjects professionally exposed to SARS-CoV-2 and their family members (155 individuals; ages 5-79 years). Seropositivity for SARS-CoV-2 Spike glycoprotein aligns with PCR results that confirm the previous infection. Anti-Spike IgG/IgM titers remain high 60 days post-infection and do not strongly associate with symptoms, except for fever. We analyze PBMCs from a subset of seropositive and seronegative adults. TLR7 agonist-activation reveals an increased population of IL-6+TNF-IL-1ß+ monocytes, while SARS-CoV-2 peptide stimulation elicits IL-33, IL-6, IFNa2, and IL-23 expression in seropositive individuals. IL-33 correlates with CD4+ T cell activation in PBMCs from convalescent subjects and is likely due to T cell-mediated effects on IL-33-producing cells. IL-33 is associated with pulmonary infection and chronic diseases like asthma and COPD, but its role in COVID-19 is unknown. Analysis of published scRNAseq data of bronchoalveolar lavage fluid (BALF) from patients with mild to severe COVID-19 reveals a population of IL-33-producing cells that increases with the disease. Together these findings show that IL-33 production is linked to SARS-CoV-2 infection and warrant further investigation of IL-33 in COVID-19 pathogenesis and immunity.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Interleukin-33/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , COVID-19/virology , Child , Child, Preschool , Female , Humans , Interleukin-33/metabolism , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Young Adult
15.
Sci Rep ; 11(1): 3461, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1078603

ABSTRACT

Despite ongoing efforts to characterize the host response toward SARS-CoV-2, a major gap in our knowledge still exists regarding the magnitude and duration of the humoral response. Analysis of the antibody response in mild versus moderate/severe patients, using our new developed quantitative electrochemiluminescent assay for detecting IgM/IgA/IgG antibodies toward SARS-CoV-2 antigens, revealed a rapid onset of IgG/IgA antibodies, specifically in moderate/severe patients. IgM antibodies against the viral receptor binding domain, but not against nucleocapsid protein, were detected at early stages of the disease. Furthermore, we observed a marked reduction in IgM/IgA antibodies over-time. Adapting our assay for ACE2 binding-competition, demonstrated that the presence of potentially neutralizing antibodies is corelated with IgG/IgA. Finally, analysis of the cytokine profile in COVID-19 patients revealed unique correlation of an IL-12p70/IL33 and IgG seroconversion, which correlated with disease severity. In summary, our comprehensive analysis has major implications on the understanding and monitoring of SARS-CoV-2 infections.


Subject(s)
COVID-19/immunology , Immunoglobulin G/immunology , Interleukin-12/blood , Interleukin-33/blood , Seroconversion/physiology , Antibody Formation , COVID-19/blood , COVID-19/diagnosis , Humans , Severity of Illness Index
17.
Sci Rep ; 10(1): 21415, 2020 12 08.
Article in English | MEDLINE | ID: covidwho-970024

ABSTRACT

The COVID-19 pandemic resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in December 2019 in Wuhan in China has placed immense burden on national economies and global health. At present neither vaccination nor therapies are available. Here, we performed a meta-analysis of RNA-sequencing data from three studies employing human lung epithelial cells. Of these one focused on lung epithelial cells infected with SARS-CoV-2. We aimed at identifying genes co-expressed with angiotensin I converting enzyme 2 (ACE2) the human cell entry receptor of SARS-CoV-2, and unveiled several genes correlated or inversely correlated with high significance, among the most significant of these was the transmembrane serine protease 4 (TMPRSS4). Serine proteases are known to be involved in the infection process by priming the virus spike protein. Pathway analysis revealed virus infection amongst the most significantly correlated pathways. Gene Ontologies revealed regulation of viral life cycle, immune responses, pro-inflammatory responses- several interleukins such as IL6, IL1, IL20 and IL33, IFI16 regulating the interferon response to a virus, chemo-attraction of macrophages, and cellular stress resulting from activated Reactive Oxygen Species. We believe that this dataset will aid in a better understanding of the molecular mechanism(s) underlying COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Epithelial Cells/metabolism , Membrane Proteins/metabolism , Respiratory Mucosa/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , Computational Biology , Humans , Interleukin-1beta/immunology , Interleukin-33/immunology , Interleukin-6/immunology , Interleukins/immunology , Lung/cytology , Membrane Proteins/genetics , Nuclear Proteins/immunology , Phosphoproteins/immunology , Reactive Oxygen Species/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Respiratory Mucosa/cytology , Serine Endopeptidases/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL